
Summary of Relationships for Two-Dimensional Rigid-Body Dynamics
All of the following results are given without proof:

Angular Momentum

The angular momentum LA of a system of n particles about a point A is defined as

i = n
LA ≡ ∑ mi ri × vi,                  (1)

i = 1

where ri and vi are the position and velocity, respectively, of particle i with respect to A.  In Eq.
(1), point A as well as the particles can be moving in any manner whatsoever.  For a rigid body,
where the inter-particle distances are fixed, Eq. (1) becomes

LA = Icmωωωω  + m rcm × vcm,                 (2)

where Icm is the moment of inertia about an axis through the c.m. perpendicular to the plane in
which the object is rotating, rcm is the vector from A to the c.m., m is the total mass, and vcm is
the velocity of the c.m. relative to point A.  Eq. (2) can be used directly or reduces usefully in three
commonly occurring cases:

(i) If A is fixed, then, again,

LA = Icmωωωω  + m rcm × vcm,                 (2)

but now, vcm is simply the velocity of the c.m. in the frame of reference in which the problem is
posed.

(ii) If A is a fixed point and the motion of the rigid body is purely rotational about A, then,

LA = IAωωωω .                                            (3)

(iii) If A is the c.m., then the second term on the right in eq. (2) vanishes because rcm = the
displacement vector from A to the c.m. and is zero.  Thus,

Lcm = Icmωωωω .                                            (4)

Note that Eq. (4) holds even if the c.m. is either moving or accelerating.  However, if the c.m.
is fixed, Icmωωωω is the angular momentum about any fixed point, as can be easily seen from the
fact that vcm = 0 in Eq. (2).

(continued on other side)



Torque

If point A is the center of mass of the system, a fixed point in space, or the instantaneous center of
rotation of a rigid body, then

ττττA    = d/dt (LA).                                            (5)

There are two commonly occurring cases for which Eq. (5) reduces usefully:

(i) Conservation of angular momentum: If A is a point about which there is no torque, then LA is 
conserved, and

LA = L'A                                                    (6)

(ii) If there are external torques about point A, then

ττττA    = ΙAαααα.                    (7)

Remember, for (i) and (ii) above to hold, A must be a fixed point, the c.m., or the instantaneous
center of rotation of a rigid body.

Kinetic Energy

The KE of a system of particles is  KE ≡ 1/2 ∑mi vi2.  For a rigid body this becomes

KE =1/2 mtot vcm2 +1/2 Icmω2.

That is, the KE can be thought of as having two contributions:  (1) KE of the translational energy
of the total mass of the body moving at a velocity of its c.m. and (2) KE of its rotational energy
about the center of mass. If the rigid body is solely rotating about a fixed point A, then,

KE =1/2 IAω2.

Prescription for Solving Rigid-Body-Dynamics Problems

If there are no external forces on a system, then both angular momentum and linear momentum are
conserved. Energy is not conserved if there is internal friction or if inelastic collisions occur. If no
work is done by non-conservative forces (internal or external), then energy is conserved. If there is
a force on the system, even if that force does no work, it will generally produce a torque. Then it is
best to use ττττ    = Ιαααα and F = m acm. Often, judicious choice of the point about which to take torques
saves time. When using ττττ    = Ιαααα, only use either a fixed point of the object (if one exists), the c.m.,
or the instantaneous center of rotation (the point on the surface instantaneously in contact with the
rolling object). When the total external torque about one of these three points is zero, angular
momentum about that point is conserved. When an object of circular cross-section rolls w/o
slipping, vcm = Rω, and acm = Rα. Moreover, in this case, friction does no work. Whereas
torque, angular momentum, and angular velocity are defined in terms of three-dimensional vectors,
in a two-dimensional problem, these quantities are most easily described as scalars, with counter-
clockwise = positive and clockwise = negative. This description is possible because, for a two-
dimensional problem, each of these three vector quantities will be in the +z direction for a CCW
rotational sense and in the –z direction for a CW rotational sense.


